Реле плавного включения света в квартире - Electro-Lider.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Реле плавного включения света в квартире

Автомат плавного включения и отключения освещения

21 Мар 2017г | Раздел: Работы читателей

Здравствуйте, уважаемые читатели сайта sesaga.ru. Просматривая статью о регуляторе мощности паяльника, я сразу вспомнил о давно собранной и хорошо отрекомендовавшей себя схеме плавного включения и выключения освещения, которая была опубликована в журнале Радио №10 1981г., стр.54.

В приведённой конструкции при включении свет за 1,5 – 2 секунды плавно загорается до максимума, а при выключении гаснет так же плавно (как в кинотеатре) за 1,5 – 2 минуты. Эта конструкция очень здорово подходит применительно к ночнику, бра или люстре, правда применяться в светильниках должны только лампы накаливания. Очень важно, что использование предлагаемой схемы намного увеличивает срок службы ламп накаливания, поскольку у них есть характерная особенность очень часто перегорать в момент обычного включения.

Я повторил эту схему с теми же номиналами резисторов, но вместо германиевых транзисторов и диодов использовал кремниевые.

В качестве регулирующего элемента применил тиристор VD5 PCR406J от китайской ёлочной гирлянды, поэтому размеры печатной платы получились 40х30мм, что идеально подходит к размерам коробочки от управления гирляндой.

Чтобы схема работала во всём диапазоне напряжений от 0 до 220 В применён диодный мост VD6VD9, составленный из отечественных выпрямительных диодов КД105В. Диоды в развязках VD1VD3 я использовал КД522В, но можно использовать и импортный аналог 1N4148. Мощность гасящего резистора R7 уменьшена до 0,5Вт, а номинал увеличен до 68 кОм, все остальные резисторы МЛТ 0,125.

Увеличение номинала гасящего резистора R7 обеспечивает ток стабилизации стабилитрона VD4, основного нагрузочного элемента схемы, в пределах 10–15мА, что является его номинальным током стабилизации. В данном случае схема работает в нормальном режиме без какого-либо нагрева резистора R7.

Напряжение питания после гасящего резистора соответствует напряжению стабилизации стабилитрона VD4 (можно применить стабилитроны Д814 с буквенными индексами А – Д и напряжением стабилизации 7 — 12 В). У меня применён стабистор КС210Б – двуханодный стабилитрон, при использовании которого соблюдать полярность включения не требуется, а вот при применении обычного стабилитрона соблюдать полярность очень важно, так как если ошибиться, то стабилизации напряжения не будет.

При повторении схемы ставилась задача применения транзисторов на кремниевой основе, а так же хотелось максимально уменьшить габаритные размеры печатной платы. В приведенном варианте схема завелась с пол оборота, то есть хочу отметить, что при правильном монтаже и исправности применённых радиоэлементов всё должно заработать сразу.

Настройка минимальная и заключается только в подборке номиналов конденсаторов С1 и С2. Увеличение ёмкости конденсатора С1 приводит к увеличению времени плавного погасания ламп, а уменьшение ёмкости С2 к увеличению времени плавного зажигания ламп. В качестве нагрузки использовалась настольная лампа с мощностью лампы накаливания 40 Вт.

Собранную и проверенную в работе конструкцию прилагаю на фото, но это чисто проверочный вариант, так как при создании собственной конструкции Вам, возможно, придётся применить свою смекалку и адаптировать схему под свой светильник. Если плата упакована в коробочке от ёлочной гирлянды, то её можно расположить около выключателя или спрятать где-нибудь поблизости. Из коробки выходят четыре провода – два на новый выключатель и два к уже установленному.

При мощности нагрузки до 60 Вт предложенный тиристор и диоды себя вполне удовлетворяют, а вот для мощности от 200 Вт и более необходимо применять выпрямительный мост и тиристор, рассчитанные на бóльший ток в соответствии с мощностью светильника. В моём первом варианте нагрузкой схемы была люстра суммарной мощностью 360 Вт и применены диоды Д245 и тиристор КУ202Н, и при этом никаких радиаторов не потребовалось. Сейчас в продаже имеется много мощных диодов, а так же диодных мостов, например KBL406.

Чтобы задействовать установку для работы к уже подключённой люстре необходимо два контакта диодного моста, идущие на переменку (у диодного моста эти выводы обозначены значком «

»), подключить к клеммам выключателя, который должен находиться в разомкнутом состоянии, а так же установить рядом дополнительный выключатель, управляющий работой схемы.

Хочу немного сказать о применяемых транзисторах. В схеме могут работать практически любые транзисторы. Из отечественных вариантов хорошо подойдут КТ502, КТ503, КТ3102, КТ3107 с любым буквенным индексом. У меня для экономии места задействованы VT1, VT4КТ315 и VT3 КТ361. Величина коэффициента усиления транзисторов не имеет особого значения, хотя транзистор VT2 КТ3107, управляющий работой генератора импульсов, применён с немного бóльшим коэффициентом усиления h21э. Он поставлен скорее для перестраховки, но КТ502 или КТ361 то же должны работать надёжно.

При создании принципиальной электрической схемы применялась программа «sPlan 6.0», а разводка печати производилась в программе «Layout40». Файл печатной платы можно скачать по этой ссылке.

ВАЖНО! Данная конструкция имеет бестрансформаторное питание, поэтому все операции необходимо проводить при отключённой сети во избежание поражения электрическим током!

Желаю успеха в создании конструкции!
Алексей Жевлаков, г. Москва.

Сообщества › Кулибин Club › Блог › Электрика: плавное включение света фар

Это будет ещё один вариант схемы плавного включения фар.

Для начала немножко теории.

Многие, наверное, замечали, что перегорание ламп накаливания в подавляющем большинстве случаев приходится на момент их включения. Отчего же это происходит?

Виноват в этом, разумеется, Георг Ом со своим законом. Дело в том, что сопротивление холодной нити лампы в 10-12 раз ниже, чем в разогретом состоянии. По закону Ома, ток в цепи обратно пропорционален сопротивлению: I = U / R. Значит ток в цепи каждой лампы тоже в момент включения в 10-12 раз выше номинального, то есть, для стандартной лампы 55Ватт он может достигать 60 Ампер! Но в течение каких-то сотых долей секунды нить нагревается, сопротивление увеличивается и ток падает до номинального уровня. Обычно этот момент проходит так быстро, что ничуть не вредит ни реле, ни предохранителю, которые подводят ток к двум лампам и рассчитаны на ток куда ниже 120 Ампер.
Рассмотрим чуточку подробнее, что же страшного может случиться в этот краткий миг включения. Для этого рассмотрим нить лампы под электронным микроскопом:

Спиралька не идеальная, какие-то участки её оказываются потоньше, какие-то потолще.

Очевидно, теплоёмкость тонких участков оказывается меньше, а значит, при таком же протекающем токе, они быстрее нагреваются.

Как было упомянуто ранее, сопротивление нагретой спирали больше сопротивления холодной. Ток, как мы знаем, одинаков во всех участках цепи, а по тому же закону того же Георга, падение напряжения на участке цепи равно произведению значений силы тока и сопротивления этого участка. U = I * R. Это значит, что падение напряжения на втором, “тонком” участке будет больше чем на других.
Мощность высчитывается как произведение тока на напряжение: P = I * U. А это значит что на этом самом тоненьком участке цепи будет рассеиваться самая большая мощность.
В результате, пока соседние участки не спешa нагреваются, тоненький отрезок спирали успеет немного выгореть и стать ещё тоньше к следующему включению лампы. А значит при следующем включении различие в нагреве разных участков спирали будет ещё более выраженным. Ситуация будет ухудшаться с каждым включением, пока не произойдёт:

Выход прост: ограничить рассеиваемую мощность, уменьшив ток в цепи. Существует несколько разных вариантов как этого добиться, и самые распространённые из них это:

1. Использование NTC термистора и реле. Термистор около 2-5 Ом (при 25 градусах) включается последовательно с лампой, и часть мощности рассеивается на нём, нагреваясь он уменьшает своё сопротивление, в то время как лампа — плавно разгорается и увеличивает сопротивление. Через некоторое время падение напряжения на лампе окажется достаточным, чтобы замкнуть обмотку включенного параллельно с ней реле. Контакты реле замыкают термистор, исключая его из цепи и передавая тем самым всю мощность лампе.

2. Использование мощного полевого транзистора с конденсатором на затворе. Принцип аналогичен предыдущему. Но вместо термистора ток ограничивается полевым транзистором, затвор которого медленно заряжается, и ток в цепи плавно повышается. При этом на транзисторе в момент включения рассеивается значительное количество тепла, что требует его охлаждения. Однако в полностью открытом состоянии, за счёт низкого сопротивления сток-исток, почти вся мощность идёт на лампу, в результате дополнительное реле не требуется.

3. Широтно-импульсная модуляция. Этот вариант отличается от предыдущих тем, что управляющая схема не ограничивает ток, что уменьшает рассеиваемую на ней мощность, а значит и требования к охлаждению. Вместо этого схема при помощи того же полевого транзистора подаёт ток краткими импульсами, длительностью в несколько десятков микросекунд. За такое короткое время участки нити не успевают нагреться до опасных значений, а в те моменты когда ток через цепь не идёт, тепло с более нагретых участков нити успевает перераспределиться на менее нагретые участки, в результате чего сопротивление разных участков цепи выравнивается.

Именно этот вариант я выбрал для реализации.

Вот что мне хотелось добиться от своей схемы плавного включения света:

1) Распознавание первого включения после включения зажигания. У меня на машине лампы H4 — ближний и дальний в одной колбе. Если зажигание только включено, то свет должен разгораться плавно, чтобы плавно разогреть холодные спираль и колбу. Зато, если зажигание не выключалось, а ближний свет был выключен и включен снова — а такое происходит при включении дальнего света — разогрев должен происходить быстрее, дабы дорога была освещена.

2) Удержание в пол-накала в течение секунды после выключения. В моменты мигания дальним светом, ближний также выключается. Такой алгоритм поможет нити лишний раз не остывать и быстро вернуть свет на прежний уровень.

3) Максимальное снижение энергопотребления схемой при отключении зажигания. Токи утечки должны быть минимальными.

4) Схема должна быть собрана в корпусе штатного реле. Схема не должна требовать вмешательства в проводку, дополнительных проводочков-подключений и полностью заменять штатное реле, а при необходимости — быть заменённой обратно простой перестановкой реле.

Схема подключения штатного реле

Определившись с требованиями, я стал изучать, как подключено штатное реле

Оказалось, в моей машинке выключатель света замыкает минусовой провод обмотки, а реле зажигания — плюсовой.

Читайте также:  Камера для наблюдения за квартирой через интернет

Очевидно, что при выключении света, будет отключен также и “минус” для питания схемы. Однако, согласно моим хотелкам, схема должна продолжать работать в этой ситуации, мало того — даже держать фары включенными в пол-накала! Идея заключается в том, чтобы брать “минус” для питания схемы с фар.

Схема электронного реле

В итоге родилась такая схема:

Логика управления реализуется микроконтроллером ATtiny13A. Для питания используется линейный стабилизатор 79L05 отрицательного напряжения -5 Вольт, то есть у всей схемы общим является “плюс”.

VD3 и VD4 обеспечивают схему “минусом”. Это “быстрые” диоды. Пока выключатель света замкнут, минус идёт с него. Когда он разомкнут, микроконтроллер управляет фарами в режиме широтно-импульсной модуляции. В моменты, пока транзистор закрыт, “минус” появляется через лампы фар.

VT4 — силовой pMOSFET, который и подаёт ток на фары. IRF9310 хоть мал и невзрачен на вид, но сопротивление сток-исток у него в открытом состоянии максимум 6,8 миллиОма. Он легко тянет 20 Ампер, а импульсами и все 160.

VT1 — этот друг обесточивает схему, когда зажигание выключено. Благодаря ему потребление тока в выключенном состоянии меньше микроампера.

C1 — конденсатор питает схему в те моменты когда выключатель света разомкнут, а транзистор VT4 открыт. Схема уверено работает и при 15 микрофарадах.

R4 — нужен чтобы снизить ток, который хлынет в разряженный C1 при первом включении. Это снизит нагрузку на транзистор и на сам конденсатор. R6 — позволяет ещё дополнительно снизить ток через выключатель.

VT2 — нужен для информирования МК о том что зажигание выключено и конденсатор вот-вот разрядится. В открытом состоянии он замыкает вывод PB4 микроконтроллера на линию -5 Вольт. В закрытом, вывод PB4 микроконтроллера подтягивается к “питанию” встроенным резистором. На его месте можно было бы использовать простой диод, катодом идущий на вход микроконтроллера, а сам вход подтянуть к “GND” резистором. Однако возможна ситуация когда на линиях зажигания и питания фар окажется значительная разность потенциалов — например, при повреждении реле фар. В этом случае такое подключение убило бы микроконтроллер. Использование транзистора немного усложняет схему, но зато исключает подобные казусы.

VT3 — точно также информирует МК, но о том, что замкнут выключатель света. Он, наоборот, притягивает вход PB3 к “питанию”, а в закрытом состоянии этот вход притянут резисторм R7 к “GND”. Когда выключатель разомкнут, микроконтроллер должен как можно быстрее перейти к ШИМ-управлению лампами, чтобы давать возможность конденсатору подзарядится в моменты, когда VT4 закрыт.

Пару слов об отводе тепла

Здесь используется один силовой транзистор. По расчётам, при токе 11 Ампер (взято с запасом) и его сопротивлении 6,8мОм (максимум) на нём будет рассеиваться 0,822 Ватта. Что достаточно немного. Однако в тесном корпусе реле негде разместить радиатор. Для эффективного отвода тепла, сток транзистора припаивается как можно ближе, под обильным припоем, к ножке корпуса, которая обладает хорошей теплопроводностью и отводит тепло наружу, в массивную колодку реле и далее в корпус машины. Эксперимент показал, что даже в неподключенном к колодке реле, транзистор нагревается всего на 30-35 градусов.

К слову, штатное реле потребляет ток около 150 миллиампер, и рассеивает почти 2 Ватта тепла.

Почти одновременно с этой задумкой, я обнаружил, что если вынуть в блоке предохранителей шунт и вставить в его место нормальное реле, то включится опция дневных ходовых огней. Реле в KIA довольно занимательные, симметричные: втыкай хоть так, хоть эдак. Пара контактов по диагонали — это обмотка, а по другой диагонали — замыкаемые. Это даёт некоторые неудобства: электронное реле нельзя втыкать “абы как”.

В результате в руках у меня оказался шунт, который внешне мало отличим от реле, а кишочки у него выглядят так:

Он куда удобнее для обработки и размещения внутри всяких схем, чем обычное реле. Поработав немного ножовкой и надфилями получилось что-то такое:

Вначале по разработанной схеме был собран прототип:

Устройство для плавного включения ламп накаливания

В век энергосберегающих и светодиодных ламп многие подзабыли уже, как пользовались простейшими лампами накаливания для освещения жилья. Но есть еще те, кто не отказался от такого вида световых приборов. Конечно, они не столь высокотехнологичны и экономичны как КЛЛ или LED, однако добиться увеличения их долговечности и уменьшения энергопотребления все же можно. Возможен вариант включения в схему устройства плавного включения ламп накаливания (УПВЛ) или установка диммера.

Проблема в том, что при щелчке выключателя (резкой подаче напряжения) нить накаливания сильно изнашивается, т. к. сопротивление остывшей спирали значительно ниже, а значит и ток, поступающий на нее в момент нагрева, будет высоким (до 8 ампер). Попробуем разобраться, каков принцип работы таких устройств, помогающих прибавить жизни лампе накаливания, и как они устроены.

Принцип работы

Блок питания

Для меньшего износа нити накаливания необходимо сгладить скачок, т. е. обеспечить плавное включение и выключение ламп накаливания. Значит, нужно оптимальное соотношение температуры спирали и напряжения, что приведет к нормализации режима и, как следствие, сохранению работоспособности светового прибора на более долгий срок. Помочь может схема плавного включения ламп накаливания, если конкретно – нужно использовать специальный блок питания. В течение короткого времени нить накала разогреется до необходимого предела как температуры, так и напряжения, установленного человеком.

Схема на основе симистора

Такая схема прибора для плавного включения ламп накаливания содержит мало элементов благодаря тому, что силовым ключом в ней выступает симистор (к примеру, КУ208Г). В ней хотя и желательно, но не принципиально присутствие дросселя (в отличие от более сложной схемы на основе простого тиристора). Резистором R1 (на схеме выше) обеспечивается ограничение тока на симистор. Время накала задается цепочкой из резистора R2 и конденсатора в 500 мкФ, питание на которые идет от диода.

Когда напряжение в конденсаторе достигает уровня открытия симистора, ток проходит через него, производя запуск потребителя (источника света). Таким образом, создаются условия для постепенного розжига нити накаливания, т. е. плавное включение света. В момент отключения питания происходит медленный разряд конденсатора, в результате чего плавно выключается лампа.

На основе микросхемы

Разработанная для изготовления различных регуляторов микросхема КР1182ПМ1 как нельзя лучше подходит для сборки своими руками устройства плавного включения и выключения ламп накаливания. В случае использования такой схемы практически никаких усилий прилагать не придется, т. к. КР1182ПМ1 будет сама регулировать плавную подачу напряжения на осветительный прибор до 150 Вт. Если же мощность потребителей выше, в схему включается симистор. Неплохо подойдет для этой цели ВТА 16-600.

Плавное включение света в квартире. Устройства плавного включения (УПВЛ) ламп накаливания

Как и свечи, все лампочки в конечном итоге сгорают. Но даже изделия с самым коротким сроком службы должны работать не менее 2000 часов. Поэтому, если изделие перегорает раз в месяц или более, значит, что-то не то с элетропроводкой.

Всем известно, что чаще всего лампочки накаливания сгорают именно в момент включения, и это является одним из их недостатков. В это время мгновенный ток особо вредит лампе. Она быстро выходит из строя, а элемент из вольфрама не выдерживает нагрузки и перегорает. Для того чтобы стабилизировать пусковые токи, нужно производить плавное включение света, что создаст равный температурный режим электротока и нити.

Виды устройств плавного пуска

Для осуществления плавного перепада температурного режима используется особый прибор, который носит название устройство плавного включения лампы. Что же это такое?

Различают несколько видов изделий, которые могут обеспечить плавный пуск:

  • блок питания;
  • устройство плавного включения;
  • диммеры, или светорегуляторы.

БП и устройство имеют одинаковый принцип включения ламп накаливания 220 В, отличаются они лишь габаритами. УПВЛ имеют гораздо меньший размер, в связи с чем легко устанавливается под выключатель, люстру или в распределительную коробку. Они подключают к сети 220 В последовательно на фазный ток, а при напряжении 12/ 24 В – последовательно до трансформатора.

Диммер работает с лампой накаливания, понижая или повышая напряжение, чтобы добиться нужной освещенности. Это простая задача для тех из них, у которых нет электронных элементов. Старые светорегуляторы меняли только сопротивление или напряжение цепи. Современные диммеры этого не делают. Поэтому успешно защищают лампы от кратковременных скачков напряжения.

Принцип работы УПВЛ

Датчик блока позволяет нити разогреться до определенной температуры, поддерживая уровень напряжения, установленного пользователем (примерно 170 В). Работа лампы в щадящем режиме увеличивает ее срок службы. При этом устройство имеет существенный недостаток. При вышеуказанном напряжении освещение уменьшается примерно на две трети. Специалисты советуют устанавливать более мощные лампы в паре с УПВЛ, чтобы избежать этого нежелательного эффекта.

Защитное устройство обеспечивает плавное включение и выключение элемента за счет того, что напряжение подается постепенно за короткий период. Спираль осветительного прибора в начале пуска имеет сопротивление в 10 раз меньшее, поэтому ток для лампы в 100 Вт составляет примерно 8 А. Защитное действие выражается в том, что фазовый угол растет в период запуска, аналогично разогревается и ее спираль. Напряжение увеличивается в ней за доли секунды от 5 В до 230 В. Это позволяет сгладить скачок тока во время пуска.

Принципиальна схема устройства защиты

Схема УПВЛ состоит из следующего:

  • DA1 – регулятор фаз;
  • С1, С2, С3 – конденсаторы;
  • VS1 – симистор;
  • R1 – резистор;
  • SA1 – ключ;
  • VS1 – электрод;
  • EL1 – лампа;
  • ВТА12 – симистор.

Как же создается плавное включение света? DA1 – тиристорная микросхема со схемой управления из С1 и С2, VS1. R1 ограничивает ток через VS1. Устройство работает, когда SA1 разомкнут, С3 заряжается и запускает схему управления тиристорами. На выходе из него ток будет увеличиваться, пока не достигнет своего номинального значения. В EL1 напряжение также растет медленно с 6 В до 230 В. Время до полного включения лампы зависит от С3. При выключении SA1, С3 разряжается на R2, а напряжение постепенно падает от 230 В до 0. Период полного погашения лампы прямо пропорционально зависит от значения R2. С4 и R4 выполняют функцию защиты схемы от помех, а HL1 и R3 выполняют подсветку выключателя.

Значения С3 мкФ и времени срабатывания EL1:

  • 47 мкФ – 1 сек;
  • 100 мкф – 3 сек;
  • 220 мкФ – 7 сек;
  • 470 мкФ – 10 сек.

Место установки защитного блока

Плавное включение света в квартире достигается при правильном выборе места установки. Защиту для каждого светильника устанавливают в зависимости от его места расположения. Если имеется техническая возможность, то лучше поместить его в полость под люстрой. Достоинство устройства – его компактность. Поэтому оно устанавливается в любом доступном месте рядом с осветительным прибором.

С блоком поставляется подробная инструкция. Поэтому его можно установить самостоятельно, не прибегая к услугам электрика. Если позволяет мощность УПВЛ – возможен монтаж для группы из нескольких ламп. В этом случае лучшее место размещения — распределительная коробка. Если в защитной схеме присутствует осветительный трансформатор для понижения мощности, то блок должен находиться первым по ходу тока. Напряжение 220 В должно первым поступать на него, а далее по цепи на всю сеть освещения.

При монтаже устройства плавного включения света необходимо придерживаться строгих правил:

  1. Доступность для ремонта.
  2. Запрещено заклеивать УПВЛ обоями, закрывать гипсокартоном и заделывать штукатуркой.

Монтаж по схеме блока защиты лампы накаливания

В чем заключается сложность таких работ? Как сделать плавное включение света?

Подключение устройства в цепь:

  1. Вход УПВЛ подключают от фазы до светильника, он выполняет функцию посредника между проводом, подключающим осветительный прибор.
  2. Выход от него соединяют с другим концом провода, ведущего к лампе.
  3. Контроль работоспособности и правильной настройки устройства заключается в проверке светильника в начале пуска. В течение примерно 3-5 секунд видно, как яркое освещение становится более тусклым — это говорит о правильной работе защитного блока.
  4. При выполнении работ по монтажу необходимо строго соблюдать правила безопасности при эксплуатации и ремонте электрооборудования, а также подобрать мощность прибора, которой будет достаточно для подключения выбранного количества приборов и оборудования.

Выключатель плавного включения света своими руками

УПВЛ различных модификаций и заводов-изготовителей в достаточном количестве и ассортименте представлены на радиорынках и в магазинах электротоваров в разделах электроосветительной аппаратуры. Но, конечно, дешевле и интереснее изготовить такой прибор из составляющих самостоятельно. В продаже есть недорогой конструктор K134, который позволяет собрать надежно конструкцию и обеспечить плавное включение осветительных приборов (накаливания и галогенных) в сети

280 В до 100 Вт с отсрочкой включения 0,3 секунды.

Когда он включен, транзисторы Q1 и Q2 закрыты, резистор R3 снижает токовую нагрузку D1. R1, диоды полевых транзисторов заряжают C1. Q1 и Q2 включаются при 5 В, шунтируя R3, лампа накаливания включается в сеть.

Устройство плавного запуска BM071

Регулятор плавного включения света BM071 (K1182ПМ1T) рассчитан на 220 В. При этом подключенная мощность составляет 3 кВт.

Блок универсальный с широким спектром действия, способный функционировать не только с лампами (накаливания и галогенными), но эффективно понижать пусковые мощности нагревателей и других электроприборов в пределах заявленной нагрузки.

  1. Габариты: 75*68*33.
  2. Температура эксплуатации: -30 о С до +55 о С.
  3. Диапазон регулировки нагрузки, %: 0-100.
  4. Диапазон регулировки мощности, Вт: 0-3000.
  5. Комплект: блок BM071, документация.
  6. Функция: плавный запуск электрооборудования.

Схема подключения 6BM071

Плавное включение света 6BM071 производится в разрыв нагрузки и отличается от симисторно-динисторных схем управления, так как функционирует с более низким уровнем помех. Правильная форма синусоиды на выходе устройства позволяет использовать его и с лампами, и с более серьезной техникой – электродвигателями и отопительными приборами. Устройство легко вводится в работу. Для этого необходимо подсоединить его к сети в один из разъемов (XS1 или XS2), а приборы подключить к свободному разъему. Регулировка оборудования производится переменным резистором и зависит от его угла поворота.

Блок защиты «Гранит БЗ»

Устройство плавного включения УПВЛ «Гранит» эффективно выполняет защитные функции от губительных токовых всплесков при подключении к нагрузке. Блок стабилизирует подающее напряжение, которое теперь не зависит от перенапряжения в сети и позволяет увеличить время эксплуатации ламп в 4-6 раз. Устройство обеспечивает реальную экономию средств и снижает затраты потребителей на освещение.

Рабочие параметры блока:

  • напряжение сети до 240 В;
  • максимальная нагрузка до 230 В;
  • рабочая температура -15 о С. +35 о С;
  • «Гранит БЗ» подключается последовательно с лампами 220 В.

Блок защиты Uniel

Плавное включение света Upb-200W-BL гарантирует надежный запуск осветительного прибора (накаливания или галогенного) и стабилизирует напряжение, что также увеличивает срок службы. Блок Uniel рассчитан на мощность ламп от 150 Вт до 1 тыс. Вт и не работает с другими типами светильников, любыми электроприборами, а также с диммерами и трансформаторами.

Перспективы использования ламп

Традиционные лампочки, которые запрещены сегодня к использованию во многих странах, могут вернуться на рынок благодаря технологическому прорыву. Лампы накаливания, разработанные Томасом Эдисоном, дают освещение путем нагревания тонкой вольфрамовой нити до температуры 2700 градусов по Цельсию. Эта раскаленная проволока излучает энергию, известную как излучение черного тела, которая представляет очень широкий спектр света, обеспечивает не просто теплый свет, но и максимально точное воспроизведение всех известных цветов мироздания. Однако они всегда страдали от одной серьезной проблемы: более 95 % энергии, которая поступает в них, тратится впустую в виде тепловой энергии.

Теперь исследователи из Массачусетского технологического института и Университета Пердью, нашли способ вернуть их былую популярность и обещают создать новые лампы MIT с эффективностью светодиода. Она будет работать путем размещения нано-зеркал вокруг обычного элемента, которые будут возвращать потраченное впустую тепло обратно для получения света в диапазоне эффективности светодиодных и флуоресцентных светильников.

Элемент лампы окружен системой нано-фотонных зеркал с холодной стороны, которые пропускают видимый свет. Но отражают тепло от инфракрасного излучения. Это тепло затем поглощается ее элементом, заставляя излучать больше света. Этот оригинальный трюк очень простой и жизнеспособный. Вольфрамовый элемент тоже был изменен – MIT использует ленту вместо нити, что лучше для поглощения отраженного тепла. Эксперимент, который выполнили физики Огнин Илик, Марин Сольячич и Джон Джоаннопулос, уже сумел утроить ее эффективность до 6,6 %.

Ученые уверены, что могут достичь 40 % эффективности, которая находится на верхнем пределе возможности для любого источника света. Современные светодиоды пока достигают уровня 15 %.

И если ученые выполнят свои амбициозные обещания – традиционные лампы заслуженно воспрянут из забытья. Тогда плавное включение и выключение света будет обеспечено их конструкцией.

Электронное реле с функцией плавного включения света фар

Автор: Погребняк Дмитрий.

Введение

В моём автомобиле, Kia Cerato LD (2008) установлены галогенные фары. Слепить встречных водителей колхозно установленным “ксеноном” у меня нет никакого желания, но белый свет фар, мне кажется, куда приятнее для глаз, чем утомляющая желтизна “обычной” лампы. Я предпочитаю галогенные лампы Philips CrystalVision, которые дают световой пучок белого цвета по остальным параметром такой же как у “обычной” лампы – то есть встречные водители не ослепляются при правильной настройке фары. За такой комфорт приходится платить: мало того что они значительно дороже обычных фар, так ещё и ресурс у них не очень велик. Я заметил что момент перегорания обычно совпадает с моментом включения фар. И действительно: наибольшая нагрузка на нить выпадает на тот момент, когда от уличной температуры ей за доли секунды приходится нагреться до нескольких тысяч градусов.

Сопротивление нити лампы зависит от её температуры. Так, сопротивление холодной нити может быть в 12-13 раз ниже, чем в рабочем режиме, соответственно, в момент включения через холодную лампу протекает ток в 12-13 раз больше номинального, что также влечёт увеличение рассеиваемой мощности. Этот момент и становится губительным для лампы. Что, если замедлить нагрев нити? – подумал я. Если растянуть момент нагрева нити на несколько секунд, возможно, это увеличит срок её службы?

Идея плавного включения света не нова: при помощи мощного полевого транзистора и широтно-импульсного модулятора такаю задача реализовывалась не раз, и в интернете найдётся с десяток различных вариантов схем. Всех их объединят то, что они требуют доработок проводки самого автомобиля. А вот возможно ли собрать такую схему в корпусе штатного реле? Тогда вся установка на автомобиль заключалась бы в простой замене реле, без необходимости ворошить внутренности автомобиля. Задачка показалась мне интересной и я приступил.

Требования к схеме

Немного поразмыслив над тем, как это будет выглядеть в эксплуатации, составил для себя такие требования, которым должна удовлетворять схема:

1) Потреблять как можно меньший ток, когда зажигание выключено. Хотя потребление в районе 5-7 миллиампер, которые требуются для питания стабилизатора и микроконтроллера, было бы приемлемым, хочется минимизировать ток утечки.

2) Обеспечивать плавный, в течение 10-12 секунд, нагрев нитей ламп при первом включении. Когда машина только заведена нить должна нагреваться плавно.

3) Если зажигание не выключалось, то после повторного включения ближнего света более быстрый, в течение 0,5 секунд выход на уровень 80% и затем, в течение секунды выход на уровень 100%. Так как используются лампы H4, то есть совмещающие нити ближнего и дальнего света в одной колбе, при включении или мигании дальним светом, ближний свет отключается. После выключения дальнего света фары остаются достаточно горячими и быстрый накал не сильно сказывается на их работе. В то же время ждать несколько секунд, пока они разгорятся, как при первом старте – неприемлемо: в условиях дорожного движения дорога должна быть освещена.

4) При включенном зажигании и отключении ближнего света в течение 0,5 секунды удерживать уровень 50%. Это позволит не охлаждать нить во время кратких миганий дальним светом.

Схема включения штатного реле

Упрощённая схема включения реле ближнего света на Kia Cerato LD

Рассмотрим схему подключения реле.

Схема довольно проста: выключатель с одной стороны, зажигание с другой – управляют обмоткой реле. То есть отключение света происходит как при повороте выключателя, так и при выключении зажигания.

Выключатель – единственный источник постоянного “минуса” на этой схеме. Но по вышеизложенным требованиям после выключения, схема должна “помнить”, что зажигание не выключалась, чтобы быстро вернуть ближний свет, когда он понадобиться. Мало того! Схема должна поддерживать нити в полнакала, после того как выключатель ближнего света отключен.

Однако, источником “минуса” могут являться сами фары, чьё сопротивление достаточно мало. Решением является использование паразитного питания через цепь фар. Если установить конденсатор достаточной ёмкости, чтобы он смог удерживать питание управляющего микроконтроллера, пока тот переключается на режим широтно-импульсной модуляции (ШИМ), то он сможет подзаряжаться в моменты, когда ключ разомкнут.

Схема электронного реле

В итоге родилась такая схема:

Схема электронного реле

Использованные компоненты

На схемеНоминалКорпусОписание
ATtiny13AATtiny13A-SSUsoic-8Управляющий микроконтроллер
79L05MC79L05ACDsoic-8Стабилизатор -5В, 100мА
VD1, VD2, VD3, VD4BAS321sod323диод 200В, 250мА, 50нс
R1, R7, R9, R1220кОм0805резисторы 5%, 0.125Вт
R210кОм0805резистор 5%, 0.125Вт
R3, R5, R1051кОм0805резисторы 5%, 0.125Вт
R4, R651 Ом0805резисторы 5%, 0.125Вт
R85.1кОм0805резистор 5%, 0.125Вт
R11130 Ом0805резистор 5%, 0.125Вт
C122мкФDтанталовый конденсатор, 35 Вольт
C22.2мкФ1206керамический конденсатор X7R
VT1IRLML0030sot23МОП транзистор, n-канал, 30В, 5.2А
VT22N7002sot23МОП транзистор, n-канал, 60В, 115мА
VT3IRLML5103sot23МОП транзистор, p-канал, -30В, -0.76А
VT4IRF9310soic-8силовой МОП транзистор, p-канал,
-30В, -20А, RDS(on)
Медленный разогрев

Если зажигание было выключено, то при первом включении света фар происходит медленный разогрев:

– в течение 3х секунд коэффициент заполнения ШИМ плавно нарастает до 30%;

– затем, в течение 2х секунд остаётся на том же самом уровне, давая возможность лампам плавно набрать температуру;

– затем, в течение 3х секунд повышается до 80%, давая уже приемлемый уровень освещения;

– и, наконец, в течение 4х секунд доводится до 100%.

Удержание после выключения

Когда свет фар отключается, то коэффициент заполнения ШИМ устанавливается сразу же на 50%, давая возможность заряжаться конденсатору.

– Он удерживается на этом уровне в течение 0,5 секунды;

– и затем плавно снижается до нуля в течение 0,5 секунды.

Если зажигание не выключалось, то при повторном включении света фар происходит быстрый разогрев:

– в течение 0,5 секунд уровень нарастает до 80%;

– и затем в течение 1 секунды доводится до 100%.

Быстрый разогрев

Если во время медленного разогрева свет фар был выключен, то:

– если уровень достиг 50%, то осуществляется переход к фазе удержания.

– если уровень менее 50%, то свет выключается, и следующее включение фар будет считаться первым, будет выполняться плавный разогрев.

Если во время быстрого разогрева свет фар был выключен, то:

– если уровень больше, или равен 50%, то осуществляется переход к фазе удержания

– если уровень менее 50%, то переход на фазу удержания осуществляется к той позиции спадающей части, которая соответствует текущему уровню. Иначе говоря, происходит плавное затухание без полусекундного удержания.

Если во время фазы удержания свет фар был снова включен, то осуществляется переход к фазе быстрого разогрева, на точку графика, уровень которого соответствует текущему коэффициенту заполнения ШИМ.

Программа микроконтроллера

Программа реализует конечный автомат, находящийся в одном из шести состояний:

– зажигание было отключено, ожидание включения света фар.

– свет уже включался, ожидание повторного включения света фар

– лампа включена на 100%

– удержание и гашение после отключения фар.

ШИМ реализуется при помощи режима “phase-correct PWM” таймера, работающего на частоте процессора . В этом режиме обеспечивается полное отключение и полное включение при крайних значениях параметра ШИМ, а один период занимает 510 тактов процессора. При работе микроконтроллера на частоте 1,2 МГц, частота импульсов составляет 2353 Гц.

Обработка состояний конечного автомата осуществляется в обработчике прерывания по переполнению таймера.

Также присутствует прерывание, наблюдающее за изменением логических уровней на входах PB3 и PB4. Если такое изменение зарегистрировано, вне зависимости от того на каком именно входе, оценивается состояние обоих входов, и в зависимости от этого и текущего состояния, автомат переводится в то, или иное состояние.

Основное тело программы не выполняет никаких действий, а просто циклически переводит микроконтроллер в режим ожидания (idle).

В настройках микроконтроллера включен режим защиты по падению напряжения (Brown-out detector) установленный на уровень 2,7 Вольта. При падении напряжения ниже этого уровня микроконтроллер входит в состояние сброса.

Задержка после сброса настроена на 64мс (настройка по-умолчанию).

Изготовление реле

стандартное реле Kia

Как оказалось, Kia использует свои какие-то уникальные формы реле, которые не встретишь в магазинчиках на улице, лишь под заказ и за большие деньги. Реле симметричное четырёхногое: две ноги по диагонали – катушка, две другие ноги – замыкаемые контакты. В общем случае, это удобно: не нужно думать, какой стороной втыкать руле, оно будет работать и так и эдак. Но в нашем случае соблюдение полярности играет важную роль, если повернуть реле не той стороной, то это может привести к перегоранию силового транзистора. Что ж, придётся нарисовать на корпусе предупреждающую надпись и быть внимательным при установке.

95220-3A300 разобранный шунт реле для Kia

Но разбирать реле не пришлось. Как оказалось, в моей машине предусмотрена опция дневных ходовых огней. Всё что нужно – это вытащить заглушку, по форме точь-в-точь реле, и на её место вставить обычное реле. Я так и сделал. В руках у меня оказалась эта заглушка-шунт.

Мало того, что такой шунт куда удобнее в последующей обработке, так ещё и под заказ он обойдётся в разы дешевле, чем целое реле.

Опытный образец для экспериментов

Немного подпилив и обработав шунт, я приступил к проектированию платы, которая поместилась бы в этот корпус. Места внутри не много: плата не должна превышать 19мм в ширину и 18мм в высоту. Плату пришлось делать двухсторонней. Стороны соединяются меж собой в четырёх точках. Для соединения я использовал кусочки ножек оставшихся от радиодеталей.

Для вытравливания использовал Лазерно-Утюжную Технологию (ЛУТ), отпечатав шаблон на лазерном принтере, на глянцевой фотобумаге для струйной печати.

Шунт, после ножовки и надфиля
Первая сторона, выполненная методом ЛУТ
Вторая сторона, выполненная методом ЛУТ
Вытравленная плата
Зачищенная и просверленная
Результат лужения
Припаянные элементы с первой стороны
Припаянные элементы со второй стороны
Результат
Результат
Результат

Исходный код прошивки для AtmelStudio 6

Исходный код прошивки микроконтроллера доступен для скачивания здесь: zip-файл, 9 кБ (последнее обновление от 12.10.2014)

Читайте также:  Правила установки газовой плиты в квартире нормы
Ссылка на основную публикацию