Армирование монолитных стен СНИП
Арматурные работы: советы профессионала, приёмы и секреты
В этой статье мы расскажем о разных видах армирования конструкций и откроем некоторые секреты профессии арматурщика. Также будут приведены упрощённые расчёты, описания документации, схемы армирования. В статье вы найдёте практические советы и рекомендации по ведению арматурных работ.
Виды армирования
Армирование — неотъемлемая часть конструкции, материал которой предусматривает переход из жидкого состояния в твёрдое. Этот процесс называют схватыванием или твердением. По способам армирования различают:
- Дисперсное — добавление в жидкий раствор фибровых волокон или металлической стружки. Придаёт монолитному участку жёсткость и стойкость к истиранию. Применяют в устройстве полов, стяжек. Может применяться в комбинации со стержневым способом.
- Стержневое — в объём бетона или раствора включают систему стержней (сетку, каркас), которая распределяет нагрузку внутри конструкции. Применяют для несущих и отдельно стоящих элементов зданий.
- Слоевое (укрепление слоя) — в слой жидкого раствора или шпатлёвки включают сетку для придания стабильности отделочного слоя. Применяют при отделке и ремонте плоскостей.
В данной статье мы рассмотрим армирование конструкций при помощи каркаса и сеток.
Армирование конструкций
Отвердевший бетон выдерживает высокие нагрузки на сжатие — до 1000 кг/см 2 , но неустойчив на излом, разрыв и растяжение. При этом его производство — относительно недорогое.
Арматурный стержень воспринимает значительные нагрузки на растяжение, но неустойчив к сжатию и изгибу. К тому же стоимость производства высока, учитывая, что в неё входят расходы на добычу металла.
Поскольку любая несущая конструкция подвергается комбинированным нагрузкам, необходим материал, удовлетворяющий нескольким требованиям. Комбинация арматурных стержней и бетона даёт комбинацию их свойств. В результате получается железобетон, устойчивый к сжатию, изгибу и излому.
Поскольку все ж/б изделия условно подразделяются на заводские и местного производства, арматура работает в них по-разному. Большинство заводских изделий производится с использованием предварительно напряжённой арматуры. Перед укладкой бетона в форму стержни предварительно растягивают (напрягают) специальным устройством. После отвердения напряжение в стержнях остаётся — арматура как бы «поджимает» весь элемент вдоль них, что значительно улучшает механические свойства детали. Например, балка или плита с предварительно напряжённой арматурой выдерживает большие нагрузки (+ 40–60%) на изгиб, чем обычные.
В высотных зданиях арматурный каркас служит основой всей конструкции. Стержни переходят из одного элемента в другой, что делает их взаимосвязанными между собой и придаёт требуемую жёсткость каркасу здания. Этот эффект даёт возможность возводить небоскрёбы на относительно малой площади.
Армирование СНиП
При строительстве ответственных зданий и сооружений расчёт сечения и количества стержней — один из основных. Нормы армирования регламентируются документами — СНиП 2.03.01–84 «Бетонные и железобетонные конструкции» и приложением к нему «Армирование элементов монолитных железобетонных зданий. Пособие по проектированию». В этих документах подробно описаны расчёты, допуски и требования к конструкциям, в которых применено армирование.
Условия эксплуатации и требования к самим стержням нормируются документом ГОСТ 10884–94 «Сталь для железобетонных конструкций».
Глубокие расчёты необходимы при строительстве крупных и сложных объектов — высотных зданий, мостов, башен, плотин. Для расчёта армирования конструкций в частном строительстве достаточно придерживаться основных правил, которые актуальны для всех случаев применения арматуры.
Сортамент арматуры
Ещё одним полезным документом является сортамент. В нём приведены все возможные характеристики арматурных изделий — вес погонного метра и зависимость его от диаметра, площадь сечения стержня и марки стали и многие другие. Эти данные необходимы при более сложных расчётах — монолитных перекрытий, резервуаров или зданий, имеющих более 3-х этажей.
Класс арматуры
Как правило, в частном порядке используют самые распространённые марки и диаметры стержней. Условно этот набор можно назвать «оптимальным разрядом». В него входят стержни диаметром от 6 до 18 мм. Классы арматуры оптимального разряда по ГОСТ 5781:
- А1 (А240). Гладкий прут Ø 6–12 мм — в бухтах (бобинах, мотках), 12–40 мм — в прутах (круг).
- А2 (А300). Имеет винтовые рёбра. Диаметр 10–12 мм — в бухтах, 12–40 мм — в прутах.
- А3 (А400). Поперечные рёбра расходятся «ёлочкой» от продольного ребра. Ø 6–12 мм — в бухтах, 12–40 мм — прутах.
Другие марки встречаются редко — в основном на объектах с высокими требованиями, эти изделия изготавливают на заказ из более качественной стали.
Армирование бетона бывает только двух видов по конструкции — плоская сетка (может быть изогнута) или пространственный каркас. Сетку применяют для лежачих плит и стяжек, пространственный каркас — для объёмных элементов — балок, перемычек, армопояса, колонн, стен и др. При этом две сетки, устроенные на стабильном расстоянии друг от друга, уже представляют собой каркас (например, стеновой).
Расчёт армирования
Когда определена форма изделия (элемента) и его размер, дело остаётся за малым — определить диаметр и шаг ячейки каркаса. В строительстве с невысокими требованиями оптимально применить эффективную систему адаптированного расчёта. Принцип применения арматуры разного диаметра прост — чем больше нагрузки несёт элемент, тем толще необходимы стержни.
Показатели каркасов и сеток для разных конструкций:
Наименование элемента | Марка арматуры | Диаметр стержня, мм | Шаг ячейки, мм | Примечание |
Подбетонка, отмостка | А1, А2, А3 | 8 | 150–250 | Ненагруженные участки |
Лежачая плита, лежачая балка (армопояс) | А2, А3 | 12–16 | 150–200 | Не глубже 50 мм от верха плиты |
Балка фундамента, висячая балка, висячая плита | А3 | 16–18 | 100–160 | В зависимости от наличия усилений и мест привязки, нагрузки |
Колонна, упорная стенка | А3 | 14–18 | 100–160 | Зависит от приложенной нагрузки |
Бортик | А2, А3 | 12–16 | 120–160 | Без существенной нагрузки |
Стена здания | А3 | 16 | 100–160 | В зависимости от привязки |
В адаптированном расчёте можно применить общий принцип — достаточный шаг ячейки будет равен диаметру стержня, умноженному на 10. В ответственных местах — примыкания и соединения элементов — следует добавлять усиления, т. е. устанавливать дополнительные стержни.
Схема армирования
Как правило, из железобетона устраивают два вида элементов — балки и плиты. В 80% случаев для выполнения каркаса любой сложности достаточно будет двух позиций:
- рабочие стержни — пруты арматуры Ø 12–18 мм, устроенные вдоль конструкции;
- распределительные (конструктивные) элементы — изделия из проволоки Ø 6–8 мм, которые распределяют в пространстве и фиксируют рабочие стержни с заданным шагом.
Разумеется, понадобится вязальная проволока.
Схема армирования балки: 1 — армирование лежачих, фундаментных балок и армопояса; 2 — армирование висячих балок, фундамента; 3 — защитный слой 40 мм; 4 — вспомогательные рабочие стержни; 5 — основные рабочие стержни; 6 — хомут
Если балка предполагается висячая, все стержни в ней должны быть одинакового сечения (не менее 16 мм). Для лежачей балки вспомогательные стержни могут быть меньшего диаметра.
Схема армирования плиты: 1 — лежачая плита; 2 — висячая плита; 3 — «лягушка»; 4 — распределительная арматура; 5 — рабочая арматура
Каркас висячей плиты представляет собой две зеркально расположенные сетки. Равное расстояние между ними удерживается с помощью ограничителей.
Станок для арматуры
Для того чтобы изготовить элементы типа «хомут» или «лягушка» потребуется специальное приспособление — гибочный станок. Если предполагается ощутимый объём бетонирования, начать следует именно с изготовления этого станка из подручного материала. Он представляет собой верстак на стальной раме, надёжно установленный в горизонтальном положении.
Чтобы собрать станок для арматуры на месте, вам понадобится подручный материал — обрезки металла, среди которых должны быть два уголка 40х40 или 45х45.
- Основной элемент станка — упор со втулкой. В середине верстака привариваем вертикально стержень длиной 8–10 мм и подбираем стальную трубку, которая свободно на него наденется.
- К трубке привариваем рычаг — лучше всего уголок горизонтальной полкой к трубке. Если уголка нет, тогда упор в 100 мм от приваренного стержня.
- К наружному краю рычага привариваем удобную ручку.
- Укладываем арматуру наибольшего диаметра (но не более 18 мм), которую необходимо гнуть параллельно длинному краю верстака.
- Привариваем к верстаку упор — лучше всего уголок.
Станок может иметь произвольную конструкцию. Основная идея — сила прикладывается в трёх точках через рычаги.
В продаже часто можно встретить заводские ручные приспособления для загиба арматуры, но они редко выдерживают интенсивные нагрузки и предназначены для домашнего использования. Для больших объёмов можно приобрести электрический гибочный станок 220 или 380 В. При помощи электрического станка можно выгибать довольно сложные элементы, которые используют в том числе и в художественной ковке. Цена нового электрического гибочного станка до 40 мм начинается от 70 000 руб.
Сварка арматуры
Самая распространённая ошибка при выполнении арматурных работ — применение электросварки для соединения элементов каркаса. Причины, по которым этого делать нельзя:
- Перегрев металла. При производстве арматуры классов А1, А2, А3 используется сталь с относительно высоким содержанием углерода. Это значит, что после нагрева она теряет до 50% свойств по прочности. Это особенно важно для соединений под углом.
- Неправильное распределение нагрузки. Жёстко зафиксированный (приваренный) участок стержня как бы вычленяется из него и работает отдельно от остальной его части. По этой причине возникают ненормальные напряжения, сосредоточенные в местах жёсткой фиксации (сварки) вместо того, чтобы распределяться по всей длине.
- Неправильно собранный каркас останется только выбросить (невозможно переделать).
- Опасность для других рабочих — возможно случайное поражение током.
- Затраты на электричество.
Однако есть случаи, когда сварка не только незаменима, но и обязательно требуется:
- Установка закладных деталей (ЗД). ЗД — приоритетные элементы, на которых сосредотачивается большая нагрузка. Они ввариваются в каркас для лучшей передачи нагрузки на стержни.
- Сварка продольных стыков (перехлёстов). Перегретая арматура сохраняет до 70% свойств на растяжение. К тому же на перехлёсте она сдвоена. Сварка продольных стержней «в стык» лишена смысла.
- Крепление по месту к уже существующим ЗД или стальным элементам (при реконструкции зданий).
Вязка арматуры
Скрепление пересекающихся стержней между собой — кропотливая и трудоёмкая работа. Но её нельзя избежать при армировании конструкций. Для этого используют мягкую вязальную проволоку толщиной от 0,5 до 2,5 мм. Приспособление для работы — крючок арматурщика — каждый специалист подбирает себе сам. Есть небольшой ассортимент заводских моделей, но в подавляющем большинстве случаев крючок изготавливают на месте из прута проволоки Ø 8–12 мм. Для этого необходимо выгнуть его в удобной форме и заточить с одного конца. На обратном конце стержня крючка можно надеть пластиковую трубку. Также крюк можно установить в аккумуляторный шуруповёрт, что значительно облегчит работу.
Для облегчения труда арматурщика есть развитые формы вязального крючка:
- Заводской арматурный крючок. Между ручкой и стержнем крюка установлен подшипник.
- Автоматический крюк. Вращается за счёт пружины в рукояти, соединённой с жалом.
- Вязальное устройство (пистолет). Операция автоматизирована, пистолет сам поджимает стержни и вяжет проволоку.
При создании каркасов для разных элементов применяют разный шаг вязки. Чем более ответственный участок — тем плотнее будут расположены узлы.
Шаг узлов в разных каркасах:
Наименование элемента | Шаг ячейки, мм | Шаг узла, ячеек вдоль х ячеек поперёк |
Подбетонка, отмостка | 150–250 | 3 х 3 |
Лежачая плита, лежачая балка (армопояс) | 150–200 | 2 х 3 |
Балка фундамента, висячая балка | 100–160 | каждое пересечение |
Висячая плита (перекрытие, балкон) | 100–160 | 2 х 2 |
Колонна, упорная стенка | 100–160 | 2 х 2 |
Бортик | 120–160 | 3 х 3 |
Стена здания | 100–160 | 2 х 2 |
Арматурные работы часто сопряжены с установкой опалубки, которую часто смазывают маслом для облегчения демонтажа. Внимательно следите за тем, чтобы масло не попадало на стержни — это приведёт к отсутствию сцепления между бетоном и арматурой. Использование сильно окисленной арматуры категорически нежелательно.
Расстояние между арматурой по СП 63.13330 (СНиП 52-01-2003)
Требования к минимальному расстоянию между стержнями арматуры
Требования к минимальному расстоянию между стержнями арматуры приведены в разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. (раздел 10.3 СП 63.13330.2018)
Для чего необходим обеспечить минимальное расстояние между стержнями в железобетонной конструкции:
- обеспечение совместной работы арматуры с бетоном;
- качественное изготовление конструкций (укладка и уплотнение бетонной смеси)
Согласно п. 10.3.5 (СП 63.13330.2012, СП 63.13330.2018), минимальное расстояние между стержнями арматуры должно составлять:
1. Не менее наибольшего диаметра стержня!
2. При горизонтальном или наклонном положении стержней в один или два ряда при бетонировании:
- для нижней арматурыне менее 25 мм;
- для верхней арматурыне менее 30 мм;
3. При горизонтальном или наклонном положении стержней более чем в два ряда при бетонировании:
- для нижней арматуры не менее 50 мм (кроме стержней двух нижних рядов).
4. При вертикальном положении стержней при бетонировании.
- не менее 50 мм;
5. При стесненных условиях допускается располагать стержни группами — пучками (без зазора между ними).
При этом расстояния в свету между пучками должны быть также не менее приведенного диаметра стержня, эквивалентного по площади сечения пучка арматуры, принимаемого равным по формуле:
d si -диаметр одного стержня в пучке,
n- число стержней в пучке.
Требования к максимальному расстоянию между стержнями арматуры
Требования к максимальному расстоянию между стержнями арматуры приведены в разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003.
Для продольной арматуры
В соответствии с п.10.3.8 — 10.3.10 СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:
1. в железобетонных балках и плитах:
- не более 200 мм — при высоте поперечного сечения h≤150 мм;
- не более 400 мм или 1,5 h — при высоте поперечного сечения h>150 мм;
2. в железобетонных колоннах:
- не более 400 мм — в направлении, перпендикулярном плоскости изгиба;
- не более 500 мм — в направлении плоскости изгиба.
3. В железобетонных стенах:
- не более 400 и не более 2t (t- толщина стены) — между стержнями вертикальной арматуры;
- не более 400 — между стержнями горизонтальной арматуры.
Важные примечания!
- В балках и ребрах шириной более 150 мм число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух.
- В балках и ребрах при ширине элемента 150 мм и менее допускается устанавливать в поперечном сечении один продольный стержень.
- В балках до опоры следует доводить стержни продольной рабочей арматуры с площадью сечения не менее 1/2 площади сечения стержней в пролете и не менее двух стержней.
- В плитах до опоры следует доводить стержни продольной рабочей арматуры на 1 м ширины плиты с площадью сечения не менее 1/3 площади сечения стержней на 1 м ширины плиты в пролете.
Для поперечной арматуры
В соответствии с п.10.3.11-10.3.20- СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:
Поперечную арматуру устанавливают у всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура.
Ее устанавливают с целью восприятие усилий, а также ограничения развития трещин, удержания продольных стержней в проектном положении и закрепления их от бокового выпучивания в любом направлении.
Диаметр поперечной арматуры (хомутов) в вязаных каркасах внецентренно сжатых элементов (колонны, стойки и т.д.) принимают не менее 0,25 наибольшего диаметра продольной арматуры и не менее 6 мм.
Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов (балках, ригелях и т.д) принимают не менее 6 мм.
В сварных каркасах диаметр поперечной арматуры принимают не менее диаметра, устанавливаемого из условия сварки с наибольшим диаметром продольной арматуры.
Максимальное расстояние для поперечной арматуры:
- не более 0,5 h и не более 300 мм — в железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном.
- не более 0,75 h и не более 500 мм — в балках и ребрах высотой 150 мм и более, а также в часторебристых плитах высотой 300 мм и более, на участках элемента, где поперечная сила по расчету воспринимается только бетоном.
- можно не устанавливать — в сплошных плитах, а также в часторебристых плитах высотой менее 300 мм и в балках (ребрах) высотой менее 150 мм на участках элемента, где поперечная сила по расчету воспринимается только бетоном.
- не более 15d и не более 500 мм — во внецентренно сжатых линейных элементах, а также в изгибаемых элементах при наличии необходимой по расчету сжатой продольной арматуры в целях предотвращения выпучивания продольной арматуры (d — диаметр сжатой продольной арматуры).
Важные примечания!
- Если площадь сечения сжатой продольной арматуры, устанавливаемой у одной из граней элемента, более 1,5%, поперечную арматуру следует устанавливать с шагом не более 10d и не более 300 мм.
- Конструкция хомутов (поперечных стержней) во внецентренно-сжатых линейных элементах должна быть такой, чтобы продольные стержни (по крайней мере через один) располагались в местах перегибов, а эти перегибы — на расстоянии не более 400 мм по ширине грани. При ширине грани не более 400 мм и числе продольных стержней у этой грани не более четырех допускается охват всех продольных стержней одним хомутом.
- В элементах, на которые действуют крутящие моменты, поперечная арматура (хомуты) должна образовывать замкнутый контур.
- Поперечную арматуру в плитах в зоне продавливания в направлении, перпендикулярном сторонам расчетного контура, устанавливают с шагом не более 1/3h и не более 300 мм. Стержни, ближайшие к контуру грузовой площади, располагают не ближе 1/3h и не далее 1/2h от этого контура. При этом ширина зоны постановки поперечной арматуры (от контура грузовой площади) должна быть не менее 1/3h. Допускается увеличение шага поперечной арматуры до 1/2h. При этом следует рассматривать наиболее невыгодное расположение пирамиды продавливания и в расчете учитывать только арматурные стержни, пересекающие пирамиду продавливания.
- Расстояния между стержнями поперечной арматуры в направлении, параллельном сторонам расчетного контура, принимают не более 1/4 длины соответствующей стороны расчетного контура.
- Поперечная арматура, предусмотренная для восприятия поперечных сил и крутящих моментов, должна иметь надежную анкеровку по концам путем приварки или охвата продольной арматуры, обеспечивающую равнопрочность соединений и поперечной арматуры.
- У концов предварительно напряженных элементов должна быть установлена дополнительная поперечная или косвенная арматура
h — рабочая высота сечения в м, вычисляется по формуле
Армирование железобетонных конструкций: минимальный и максимальный процент усиления. Защитный слой бетона
Самостоятельное строительство уже давно перестало быть чем-то из ряда вон выходящим: при наличии необходимых знаний, навыков и помощников – это вполне осуществимо. Строительные работы редко обходятся без заливки бетона, который в большинстве своем, должен содержать в себе определенное количество армирующих элементов. Надежность и долговечность бетонного объекта может гарантировать только армирование железобетонных конструкций по ГОСТу.
Конечно, самостоятельная заливка железобетонных объектов под строительство многоэтажного дома или другого подобного сооружения не представляется возможным, так как такие масштабы требуют промышленного подхода. В данном случае мы рассмотрим лишь случаи, которые могут возникнуть в частной практике, где вы вполне можно обойтись своими силами.
Усиление фундамента под силу выполнить своими руками
В данной статье будут приведены правила армирования железобетонных конструкций, которые применяются в частном строительстве.
Армирование бетона
Заливка монолитной плиты с усилительным каркасом: фото
Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).
В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.
Минимальный процент усиления
Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.
Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”
Готовый каркас и металлического прута
Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.
Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.
- Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
- Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
- Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).
Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.
Максимальный процент усиления
Сборка каркаса перед заливкой
В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.
Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.
Как и в предыдущем случае, здесь также имеются нормативы.
- Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;
Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.
Защитный слой бетона
Схема Ж/б в разрезе
Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).
Толщина слоя над металлическим каркасом составляющими должна составлять.
В стенках и плитах (толщиной мм) не менее:
- Свыше 100 мм – 15 мм;
- До 100 мм и включительно – 10 мм;
В ребрах и балках:
- Свыше 250 мм – 20 мм;
- До 250 и включительно – 15 мм;
В фундаментных балках:
Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.
Укрепление лестничного пролета
- Монолитных с цементной подушкой – 35 мм;
- Сборных – 30 мм
- Монолитных без цементной подушки – 70 мм;
Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”
Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.
Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).
Устройство железобетонных монолитных конструкций
Монолитные железобетонные конструкции были впервые применены в России в 1802 году. В качестве материала для армирования использовались металлические стержни. Первым строением, созданным с использованием данной технологии, стал Царскосельский дворец.
Монолитные железобетонные конструкции часто применяются при производстве таких изделий, как:
Железобетонные монолитные конструкции позволяют строить здания любой сложности и конфигурации. К тому же эта технология не ограничивается заводскими стандартами. Конструктор имеет невероятно широкое поле для творчества.
Зачем необходимо армирование?
Безусловно, бетон имеет множество преимуществ. Он обладает большой прочностью и спокойно переносит перепады температур. Даже вода и мороз не могут ему повредить. Тем не менее его сопротивление растяжениям находится на крайне низком уровне. Здесь в игру вступает арматура. Она позволяет добиться повышенной прочности ЖМК и сократить расход бетона.
В теории в качестве материала для армирования можно использовать всё что угодно, даже стебли бамбука. На практике же применяется всего два вещества: композит и сталь. В первом случае — это целый комплекс материалов. В основе изделия могут лежать базальтовые или углеродные волокна. Они заливаются полимером. Композитная арматура имеет небольшой вес и не поддаётся коррозии.
Сталь имеет несравнимо большую механическую прочность, к тому же её стоимость относительно невелика. В процессе армирования железобетонных монолитных конструкций используются:
- уголки,
- швеллеры,
- двутавровые балки,
- гладкие и рифленые стержни.
При создании сложных строительных объектов в основе монолитной железобетонной конструкции укладываются металлические сетки.
Строительная арматура может иметь разную форму. Но в продаже чаще всего можно найти только стержневую. Рифлёные стальные стержни чаще всего используются при строительстве малоэтажных зданий. Низкая цена и хорошее сцепление с бетоном делают их очень привлекательными для потенциальных покупателей.
Стальные стержни, используемые при создании железобетонных монолитных конструкций, в большинстве случаев имеют толщину от 12 до 16 миллиметров. Они отлично защищают структуру от разрывов. Нагрузку, создаваемую при сжатии, компенсирует сам бетон.
Особенности армирования в зависимости от типа устройства фундамента
Когда закладывается фундамент дома очень важно соблюдать правила армирования монолитных железобетонных конструкций. Это позволит избежать множества дефектов и гарантирует долгий срок эксплуатации объекта. Согласно устройству железобетонных монолитных конструкций выделяют три типа фундамента.
Плитный фундамент
При его армировании применяется стержневая рифлёная арматура. Толщина железобетонной монолитной конструкции (плиты фундамента) зависит от количества этажей и материала, используемого при строительстве. Стандартный показатель 15—30 сантиметров.
Качественное армирование плитного фундамента должно иметь два слоя. Нижняя и верхняя решётки соединяются посредством подпорок. Они формируют зазор нужного размера.
Главным отличием профессионального армирования железобетонных монолитных конструкций — является полное сокрытие всех элементов стального каркаса. При этом в плиточном фундаменте арматура не сваривается между собой, а вяжется посредством проволоки.
Ленточный фундамент
Устройство данной железобетонной монолитной конструкции состоит из решётки, которая размещается в верхней части и берёт на себе все нагрузки, связанные с растяжением.
Сваривать элементы каркаса крайне не рекомендуется — это уменьшит его прочность. При этом слой бетона, разделяющий стальные элементы и грунт должен быть не менее пяти сантиметров. Это защитит металл от коррозии.
В железобетонной монолитной конструкции очень важно соблюдать правильную дистанцию между продольными стержнями. Граничный показатель — 400 миллиметров. Поперечные элементы используются тогда, когда высота каркаса превышает 150 мм.
Дистанция между соседними стержнями в железобетонной монолитной конструкции не может превышать 25 миллиметров. Углы и соединения дополнительно усиливаются. Это позволяет придать фундаменту большую прочность.
Свайный фундамент
Данная технология используется при возведении строения на пучинистых грунтах. Оптимальная дистанция от ростверка до грунта 100—200 мм. Зазор позволяет создать воздушную подушку, что положительно влияет на утеплённость всего дома. К тому же воздушная подушка позволяет избежать образования на первом этаже сырости.
При создании свай используется бетон марки М300 и выше. Предварительно бурятся скважины, в которые вкладывается рубероид. Он также служит опалубкой. Каркас из арматуры опускается внутрь каждого отверстия.
Конструкция каркаса состоит из продольной рифленой арматуры. Сечение стержней от 12 до 14 мм. Крепление осуществляется посредством проволоки. Минимальный диаметр сваи — 250 мм.
Стены и перекрытия
Эти элементы также требуют особых правил армирования. В принципе они сходны с нормами создания фундаментов, но есть некоторые отличия:
- Минимальный продольный диаметры арматуры в стене — 8 мм, максимальный шаг в длину 20 сантиметров, поперечный — 35 см. Сечение поперечной арматуры не менее 25% от сечения продольной.
- Перекрытия. Диаметр арматуры определяется расчётными нагрузками. Минимальный показатель восемь миллиметров. Дистанция между стержнями не больше 20 мм.
- При создании как стен, так и перекрытий допускается использование сетки.
Нормы армирования для стен и перекрытий отличаются из-за разной степени нагрузок, которые испытывают эти железобетонные монолитные конструкции.
Главное правило армирования
Прочность всей железобетонной монолитной конструкции зависит от связи бетона и арматуры. Необходимо чтобы бетон передавал часть нагрузки стальной арматуре без потери энергии.
Главное правило армирования гласит, что в железобетонной монолитной конструкции не должно быть нарушения связи. Максимально допустимое значение данного параметра — 0,12 миллиметра. Надёжное соединение бетона и арматуры — гарантия прочности и долговечности всего здания.
Проектирование
Что такое проектирование?
Проектирование железобетонных монолитных конструкций — это создание чертежей на основе собранных геодезических данных, имеющихся материалов и предназначения здания. Несущую систему монолитного каркасного здания составляют перекрытия, фундамент и колонны.
Задача конструктора правильно рассчитать нагрузки на все элементы и составить оптимальный проект с учётом особенностей грунтов и климатических условий. Сам процесс создания железобетонных монолитных конструкций включает в себя:
- компоновку;
- расчёт конструирования второстепенной балки;
- расчёт нагрузок;
- расчет перекрытий по предельным состояниям первой и второй группы.
Для упрощения математических расчётов используется специальное программное обеспечение, к примеру, AutoCAD.
Проектировка и расчёт согласно СНиПам
По факту пособие по проектированию монолитных железобетонных конструкций — это и есть СНиП. Это некий свод правил и норм, который содержит стандарты строительства жилых и нежилых зданий на территории РФ. Этот документ динамически обновляется в зависимости от изменений технологий строительства и подходов к безопасности.
СП по монолитным железобетонным конструкциям разрабатывался ведущими учёными и инженерами. СНиП 52-103-2007 касается ЖМК, сделанных на основе тяжелого бетона без предварительного напряжения арматуры. Согласно данному документу различают такие типы несущих элементов:
При использовании железобетонных монолитных конструкций допускается проектировка этажей в разной конструктивной системе несущих элементов.
При расчёте параметров несущих элементов согласно СНиПам учитывается:
- Определение усилия, действующего на фундамент, перекрытия и другие элементы конструкции.
- Амплитуда вибраций перекрытий верхних этажей.
- Расчёт устойчивости формы.
- Оценка сопротивляемости процессу разрушения и несущей способности здания.
Данный анализ позволяет не только определить параметры железобетонных монолитных конструкций, но и узнать срок эксплуатации здания.
Особое внимание при проектировании уделяется несущей железобетонной монолитной конструкции. При этом учитываются такие параметры:
- Возможность и скорость образования трещин.
- Температурно-усадочные деформации бетона при затвердевании.
- Прочность ЖМК при снятии опалубки.
Если правильно произвести все расчёты, то созданное изделие прослужит десятки лет даже в самых экстремальных условиях.
Когда рассчитываются параметры несущих ЖМК используются линейные и нелинейные жёсткости железобетонных элементов. Вторые назначают для сплошных упругих тел. Нелинейная жёсткость вычисляется по поперечному сечению. При этом очень важно учитывать возможность образования трещин и других деформаций.
Порядок выполнения строительных работ с ЖМК
Каждая строительная компания старается достичь наилучшей организации производственного процесса. Для этого используются СНиПы и международные стандарты. Тем не менее существует сложившийся порядок работ, который позволяет гарантировать максимальное качество будущей постройки:
- Вначале осуществляется расчёт по четырём основным видам нагрузки: постоянная, временная, кратковременная, особая. К примеру, при создании фундамента для агрегатов, создающих сильные вибрации, используются исключительно железобетонные монолитные конструкции.
- Геодезическая разведка, составление плана, а также анализ общих показателей.
- Определение точек возводимого строения.
- Армирование конструкций. Оно бывает двух типов: предварительно напряжённое и обычное.
- Монтаж опалубки. Опалубка позволяет создать необходимую форму для будущей железобетонной конструкции. При этом она может классифицироваться по разборности, материалу, назначению и конструкции.
- Бетонирование. Есть четыре основных способа заливки бетона: с лотка миксера прямо на опалубку; посредством автобетононасоса; через желоб; при помощи колокола. Для уплотнения бетона применяют вибратор.
Очень важную часть в создании прочной и надёжной железобетонной монолитной конструкции играет уход за бетоном. Всё дело в том, что этот материал может застыть только при определённых условиях. Обычно полное затвердевание бетона занимает около 15—28 суток, если не используются специальные сорта цемента. Чтобы предотвратить испарение влаги в жаркое время года ЖМК поливают водой.
Как проходит монтаж?
Данная технология позволяет экономить на материалах, ведь именно компания застройщик определяет целесообразность использования тех или иных элементов конструкции. Монтаж железобетонных монолитных конструкций проходит прямо на строительной площадке и состоит из таких этапов:
- На площадку укладывается материал для армирования. Важно соблюдать нормативные расстояния между элементами каркаса. Это гарантирует равномерность растекания бетона.
- Заливается бетон. На этом этапе необходимо следить, чтобы в смесь не попали масляные вещества. Они препятствуют связыванию бетона.
- При необходимости устанавливается дополнительное оборудование, ускоряющее сушку.
Железобетонные монолитные конструкции позволяют создавать кривые линии, что делает общую архитектуру здания в разы богаче и насыщеннее.
Итоги
Железобетонные монолитные конструкции позволяют строить здания в минимальные сроки, используя современные сорта бетона. Важным этапом строительства является проектирование. Именно правильные расчёты позволяют создать прочную постройку с длительным сроком эксплуатации.
Железобетонные монолитные конструкции используются как в промышленном строительстве, так и жилищном. Сравнительно небольшая стоимость и прочность делают их незаменимыми в производственных цехах и при возведении многоэтажных зданий.
Нормативные документы
Главное меню
ПОСОБИЕ по проектированию жилых зданий Конструкции жилых зданий (к СНиП 2.08.01-85) |
Автор Редактор контента | |
04.08.2008 г. | |
СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА 5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот). Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми. 5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 . 5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами. Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 . 5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями. 5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными. Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона. Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов. 5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а). Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен. Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны. Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны: сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя; плиты утеплителя устанавливают после бетонирования стен. При этом необходимо применять калиброванные по толщине плиты утеплителя. При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя. 5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б). Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в). Рис. 26. Наружные стены монолитных зданий а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона 1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон 5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены: если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены; в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 . Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов. Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий. Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами. 5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях. Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней. 5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93. 5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух. В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы. 5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7. Adblockdetector |